Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Igaku Butsuri ; 44(1): 1-7, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38583957

RESUMO

At the National Institutes for Quantum Science and Technology (QST), a multi-ion therapy using helium, carbon, oxygen, and neon ions has been studied for charged particle therapy with more optimal biological effects. To make multi-ion therapy clinically feasible, a new treatment system was developed to realize the changes of the ion species in each irradiation using the Heavy Ion Medial Accelerator in Chiba (HIMAC). Since radiation therapy is safety-critical, it is necessary to construct a safety system that includes multiple safety barriers in the new treatment system for multi-ion therapy and to perform a safety analysis for the prevention of serious accidents. In this study, we conducted a safety analysis using event tree analysis (ETA) for newly introduced processes in the treatment planning, accelerator, and irradiation system of the multi-ion therapy. ETA is an optimal method to verify multiple safety barriers that are essential for medical safety and to shorten the time for safety analysis by focusing only on the new processes. Through ETA, we clarified the types of malfunctions and human errors that may lead to serious accidents in the new system for multi-ion therapy, and verified whether safety barriers such as interlock systems and human check procedures are sufficient to prevent such malfunctions and human errors. As a result, 6 initial events which may lead to serious accidents were listed in the treatment planning process, 16 initial events were listed in the accelerator system, and 13 initial events were listed in the irradiation system. Among these 35 initial events, 5 cautionary initial events were identified that could lead to serious final events and they had a probability of occurrence higher than 10-4. Meanwhile, the others were all initial events that do not lead to serious accidents, or the initial events that can lead to serious accidents but were considered to have sufficient safety barriers. The safety analysis using ETA successfully identified the system malfunctions and the human errors that can lead to serious accidents, and the multiple safety barriers against them were systematically analyzed. It became clear that the multiple safety barriers were not sufficient for some initial events. We plan to improve the safety barriers for the five cautionary initial events before the start of the clinical trial. Based on these findings, we achieved our objective to conduct a safety analysis for a new treatment system for multi-ion therapy. The safety analysis procedure using ETA proposed by this study will be effective when new systems for radiotherapy are established at QST and other facilities in the future as well.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Humanos , Radioterapia com Íons Pesados/métodos , Íons , Oxigênio/uso terapêutico , Carbono
2.
Phys Med Biol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636504

RESUMO

OBJECTIVE: Treatment plans of charged-particle therapy have been made under an assumption that all cancer cells within a tumour equally respond to a given radiation. However, an intra-tumoural cellular radiosensitivity heterogeneity clearly exists, and it may lead to an overestimation of therapeutic effects of the radiation. The purpose of this study was to develop a biological model that can incorporate the radiosensitivity heterogeneity into biological optimization for charged-particle therapy treatment planning. Approach. The radiosensitivity heterogeneity was modeled as the variability of a cell-line specific parameter in the microdosimetric kinetic model following the gamma distribution. To validate the developed intra-tumoural-radiosensitivity-heterogeneity-incorporated microdosimetric kinetic (HMK) model, a treatment plan with H-ion beams was made for a chordoma case assuming a radiosensitivity heterogeneous region within the tumour. To investigate the effects of the radiosensitivity heterogeneity on the biological effectiveness of H-, He-, C-, O-, and Ne-ion beams, the relative biological effectiveness (RBE)-weighted dose distributions were planned to a cuboid target with the stated ion beams without considering the heterogeneity. The planned dose distributions were then recalculated by taking the heterogeneity into account. Main results: The cell survival fraction and corresponding RBE weighted dose w- ere formulated basedon the HMK model. The first derivative of the RBE-weighted dose distribution was also derived,which is needed for fast biological optimization. For the patient plan, the biological optimization increasedthe dose to the radiosensitivity heterogeneous region to compensate for the heterogeneity-inducedreduction in biological effectiveness of the H-ion beams. The reduction in biological effectiveness dueto the heterogeneity waspronouncedfor low-LET beams but moderate for high-LET beams. The RBE-weighted dose in the cuboid target decreased by 7.6% for the H-ion beam, while it decreased by just 1.4% for the Ne-ion beam. Significance. The optimal treatment plans that consider the intra-tumoural cellular radiosensitivity heterogeneity can be devised using the HMK model. .

3.
Phys Med Biol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604184

RESUMO

OBJECTIVE: To investigate the effect of redistribution and reoxygenation on the 3-year tumor control probability (TCP) of patients with stage I non-small cell lung cancer (NSCLC) treated with carbon-ion radiotherapy. Approach. A meta-analysis of published clinical data of 233 NSCLC patients treated by carbon-ion radiotherapy under 18-, 9-, 4-, and single-fraction schedules was conducted. The linear-quadratic (LQ)-based cell-survival model incorporating the radiobiological 5Rs, radiosensitivity, repopulation, repair, redistribution, and reoxygenation, was developed to reproduce the clinical TCP data. Redistribution and reoxygenation were regarded together as a single phenomenon and termed "resensitization" in the model. The optimum interval time between fractions was investigated for each fraction schedule using the determined model parameters. Main results. The clinical TCP data for 18-, 9-, and 4-fraction schedules were reasonably reproduced by the model without the resensitization effect, whereas its incorporation was essential to reproduce the TCP data for all fraction schedules including the single fraction. The curative dose for the single-fraction schedule was estimated to be 49.0 Gy (RBE), which corresponds to the clinically adopted dose prescription of 50.0 Gy (RBE). For 18-, 9-, and 4-fraction schedules, a 2-to-3-day interval is required to maximize the resensitization effect during the time interval. In contrast, the single-fraction schedule cannot benefit from the resensitization effect, and the shorter treatment time is preferable to reduce the effect of sub-lethal damage repair during the treatment. Significance. The LQ-based cell-survival model incorporating the radiobiological 5Rs was developed and used to evaluate the effect of the resensitization on clinical results of NSCLC patients treated with hypo-fractionated carbon-ion radiotherapy. The incorporation of the resensitization into the cell-survival model improves the reproducibility to the clinical TCP data. A shorter treatment time is preferable in the single-fraction schedule, while a 2-to-3-day interval between fractions is preferable in the multi-fraction schedules for effective treatments.

4.
Radiother Oncol ; 194: 110180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403023

RESUMO

This feasibility study confirmed the initial safety and efficacy of a novel carbon-ion radiotherapy (CIRT) using linear energy transfer (LET) painting for head and neck cancer. This study is the first step toward establishing CIRT with LET painting in clinical practice and making it a standard practice in the future.


Assuntos
Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosagem Radioterapêutica , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados/métodos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade
5.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232394

RESUMO

Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.


Assuntos
Carbono , Hélio , Humanos , Neônio/uso terapêutico , Carbono/uso terapêutico , Hélio/uso terapêutico , Oxigênio/uso terapêutico , Íons , Eficiência Biológica Relativa
6.
Adv Radiat Oncol ; 9(1): 101317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38260238

RESUMO

Purpose: Dose-averaged linear energy transfer (LETd) is one of the important factors in determining clinical outcomes for carbon-ion radiation therapy. Innovative LET painting (LP) has been developed as an advanced form of conventional intensity modulated carbon-ion radiation therapy (IMIT) at the QST Hospital. The study had 2 motivations: to increase the minimum LETd (LETdmin) and to improve uniformity of the LETd distribution within the gross tumor volume (GTV) by using LP treatment plans for patients with head and neck cancer while maintaining the relative biologic effectiveness (RBE)-weighted dose coverage within the planning tumor volume (PTV) the same as in the conventional IMIT plan. Methods and Materials: The LP treatment plans were designed with the in-house treatment planning system. For the plans, LETd constraints and LETdmin, goal-LETd, and maximum-LETd (LETdmax) constraints for the GTV were added to the conventional dose constraints in the IMIT prescription. For 13 patients with head and neck cancer, the RBE-weighted dose to 90% (D90) and 50% (D50) of the PTV and the LETdmin, mean (LETdmean), and LETdmax values within the GTV in the LP plans were evaluated by comparing them with those in the conventional IMIT plans. Results: The LP for 13 patients with head and neck cancer could keep D90s and D50s for the PTV within 1.0% of those by the conventional IMIT. Among the 13 patients, the mean LETdmin of the LP plans for the GTV was 59.2 ± 7.9 keV/µm, whereas that of the IMIT plans was 45.9 ± 6.0 keV/µm. The LP increased the LETdmin to 8 to 24 keV/µm for the GTV compared with IMIT. Conclusions: While maintaining the dose coverage to the PTV as comparable to that for IMIT, the LP increased the mean LETdmin to 13.2 keV/µm for the GTV. For a GTV up to 170 cm3, LETd > 44 keV/µm could be achieved using LP, which according to previous studies was associated with lower recurrence. In addition, the LP method delivered more uniform LETd distributions compared with IMIT.

7.
J Radiat Res ; 64(4): 685-692, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37421442

RESUMO

An oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model was previously developed to estimate the survival fraction of cells exposed to charged-particle beams with wide dose and linear energy transfer (LET) ranges under various oxygen conditions. In the model, hypoxia-induced radioresistance was formulated based on the dose-averaged radiation quality. This approximation may cause inaccuracy in the estimation of the biological effectiveness of the radiation with wide variation in energy deposited to a sensitive volume per event, such as spread-out Bragg peak (SOBP) beams. The purpose of this study was to apply an alternative approach so as to consider the energy depositions on an event-by-event basis. The production probability of radiation-induced lesions per energy was formulated with oxygen partial pressure to account for the hypoxia-induced radioresistance. The reduction in the oxygen enhancement ratio for high-LET radiations was modeled by reducing the sensitive-volume size and increasing the saturation energy in microdosimetry. The modified OSMK model was tested against the reported survival data of three cell lines exposed to six species of ions with wide dose and LET ranges under aerobic and hypoxic conditions. The model reasonably reproduced the reported cell survival data. To evaluate the event-by-event approach, survival distributions of Chinese hamster ovary cells exposed to SOBP beams were estimated using the original and modified OSMK models. The differences in the estimated survival distributions between the models were marginal even under extreme hypoxia. The event-by-event approach improved the theoretical validity of the OSMK model. However, the original OSMK model can still provide an accurate estimation of the biological effectiveness of therapeutic radiations.


Assuntos
Hipóxia , Oxigênio , Cricetinae , Animais , Oxigênio/metabolismo , Eficiência Biológica Relativa , Cricetulus , Células CHO , Hipóxia/tratamento farmacológico , Íons
8.
Radiol Phys Technol ; 16(2): 319-324, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37087722

RESUMO

The stopping-power ratio (SPR) of body tissues relative to water depends on the particle energy and mean excitation energy (I value) of the tissues. Effective energies to minimize the range error in proton therapy and ion beam therapy with helium, carbon, oxygen, and neon ions and elemental I values have been updated in recent studies. We investigated the effects of these updates on SPR estimation for computed tomography-based treatment planning. The updates led to an increase of up to 0.5% in the SPRs of soft tissues, whereas they led to a decrease of up to 1.9% in the SPRs of bone tissues compared with the current clinical settings. For 44 proton beams planned for 15 randomly sampled patients, the mean water-equivalent target depth change was - 0.2 mm with a standard deviation of 0.2 mm. The maximum change was - 0.6 mm, which we consider to be insignificant in clinical practice.


Assuntos
Terapia com Prótons , Humanos , Hélio/uso terapêutico , Neônio/uso terapêutico , Oxigênio/uso terapêutico , Carbono/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Água
9.
Cancer Med ; 12(2): 1540-1551, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852142

RESUMO

BACKGROUND: To evaluate the clinical relative biological effectiveness (RBE) of carbon-ion radiotherapy (C-ion RT) for prostate cancer. METHODS: The records of 262 patients with low-risk prostate cancer (median age, 65 [47-80] years) treated with C-ion RT at QST Hospital, National Institutes for Quantum Science and Technology in Japan during 2000-2018 were reviewed retrospectively. Four different protocol outcomes and prostate-specific antigen (PSA) responses were evaluated. The median follow-up was 8.4 years. The Kaplan-Meier method was used to estimate the biochemical or clinical failure-free rate (BCFFR). Clinical RBE was calculated using the tumor control probability model. RESULTS: The 5-, 7-, and 10-year BCFFRs were 91.7%, 83.8%, and 73.2%, respectively. The 10-year BCFFRs of patients who received C-ion RT at 66 Gy (RBE) in 20 fractions, 63 Gy (RBE) in 20 fractions, and 57.6 Gy (RBE) in 16 fractions were 81.4%, 70.9%, and 68.9%, respectively. The PSA level and density during follow-up were better in the patients treated with the lower fraction size. A higher PSA nadir and shorter time to PSA nadir were risk factors for biochemical or clinical failure by multivariate Cox regression. The tumor control probability analysis showed that the estimated clinical RBE values to achieve an 80% BCFFR at 10 years for 20, 16, and 12 fractions were 2.19 (2.18-2.24), 2.16 (2.14-2.23), and 2.12 (2.09-2.21), respectively. CONCLUSIONS: Using clinical data from low-risk prostate cancer patients, we showed the clinical RBE of C-ion RT decreased with increasing dose per fraction.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Idoso , Estudos Retrospectivos , Eficiência Biológica Relativa , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Carbono
10.
Phys Med ; 105: 102508, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549067

RESUMO

PURPOSE: Track structure Monte Carlo (MC) codes have achieved successful outcomes in the quantitative investigation of radiation-induced initial DNA damage. The aim of the present study is to extend a Geant4-DNA radiobiological application by incorporating a feature allowing for the prediction of DNA rejoining kinetics and corresponding cell surviving fraction along time after irradiation, for a Chinese hamster V79 cell line, which is one of the most popular and widely investigated cell lines in radiobiology. METHODS: We implemented the Two-Lesion Kinetics (TLK) model, originally proposed by Stewart, which allows for simulations to calculate residual DNA damage and surviving fraction along time via the number of initial DNA damage and its complexity as inputs. RESULTS: By optimizing the model parameters of the TLK model in accordance to the experimental data on V79, we were able to predict both DNA rejoining kinetics at low linear energy transfers (LET) and cell surviving fraction. CONCLUSION: This is the first study to demonstrate the implementation of both the cell surviving fraction and the DNA rejoining kinetics with the estimated initial DNA damage, in a realistic cell geometrical model simulated by full track structure MC simulations at DNA level and for various LET. These simulation and model make the link between mechanistic physical/chemical damage processes and these two specific biological endpoints.


Assuntos
Dano ao DNA , Prótons , Cricetinae , Animais , Sobrevivência Celular , Cinética , DNA/química , Método de Monte Carlo
11.
Phys Med Biol ; 67(21)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35961294

RESUMO

Objective.Ion radiotherapy with protons or carbon ions is one of the most advanced clinical methods for cancer treatment. To further improve the local tumor control, ion radiotherapy using multiple ion species has been investigated. Due to complexity of dose distributions delivered by multi-ion therapy in a tumor, a validation strategy for the planned treatment efficacy must be established that can be potentially used in the quality assurance (QA) protocol for the multi-ion treatment plans. In previous work, we demonstrated that the microdosimetric approach using the silicon on insulator (SOI) microdosimeter is practical for validating cell surviving fraction (SF) of MIA PaCa-2 cells in the independent fields of helium, carbon, oxygen, and neon ion beams.Approach.This paper extends the previous study, and we demonstrate a microdosimetry based approach as a pilot study to build the QA protocol in the multi-ion therapy predicting the cell SF along the spread-out Bragg peak obtained by combined irradiations of He+O and C+Ne ions. Across the study, the SOI microdosimeter system MicroPlus was used for measurement of the lineal energy in individual ion fields followed by deriving the lineal energy of combined ion fields delivered by a pencil beam scanning system at HIMAC.Main results.The predicted cell SF based on derived lineal energy and dose in the combined fields was in good agreement with the planned cell SF by our in-house treatment planning system.Significance.The presented results indicated the potential benefit of the SOI microdosimeter system MicroPlus as the QA system in the multi-ion radiotherapy.


Assuntos
Radiometria , Silício , Radiometria/métodos , Neônio , Prótons , Hélio , Projetos Piloto , Íons , Carbono , Oxigênio/uso terapêutico
12.
Phys Med Biol ; 67(13)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35667368

RESUMO

Objective.In charged-particle therapy, a ripple filter (RiFi) is used for broadening the Bragg peak in the beam direction. A conventional RiFi consists of plates with a fine ridge and groove structure. The construction of the RiFi has been a time-consuming and costly task. In this study, we developed a simple RiFi made of multi-layered metal mesh (mRiFi), with which the Bragg peak is broadened due to structural randomness, similar to what occurs for the already proposed RiFi with porous material.Approach. The mRiFi was constructed by stacking commercially available metal meshes at random positions and angles. The mRiFi was inexpensive to fabricate due to its high availability and low machining accuracy. The Bragg peak width modulated by the mRiFi can be uniquely determined by the wire material, wire diameter, wire-to-wire spacing of the metal mesh, and the number of mesh sheets. We fabricated four mRiFis consisting of 10, 20, 30, and 40 layers of stainless steel meshes with a wire diameter of 0.1 mm and a wire-to-wire spacing of 0.508 mm.Main results.Using the mRiFis consisting of 10, 20, 30, and 40 mesh sheets, we succeeded in broadening the Bragg peak following the normal distribution with the respective standard deviationσvalues of 0.83, 1.15, 1.41, and 1.56 mm in water in experimental planar-integrated depth dose measurements with 140.3 MeV u-1carbon-ion beams. The effect of range broadening with the mRiFi was independent of its lateral position, and the measurement of the surface dose using radiochromic films showed no severe inhomogeneity with a homogeneity index greater than 0.3 caused by the mRiFis.Significance.The developed mRiFi can be used as a RiFi in charged-particle therapy. The mRiFi has three advantages: high supply stability of the material for manufacturing it, easy fabrication, and low cost.


Assuntos
Carbono , Planejamento da Radioterapia Assistida por Computador , Carbono/uso terapêutico , Método de Monte Carlo , Distribuição Normal , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
13.
Radiat Res ; 198(3): 255-262, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738014

RESUMO

It has been observed that healthy tissues are spared at ultra-high dose rate (UHDR: >40 Gy/s), so called FLASH effect. To elucidate the mechanism of FLASH effect, we evaluate changes in radiation chemical yield (G value) of 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), which is formed by the reaction of hydroxyl radicals with coumarin-3-carboxylic acid (C3CA), under carbon ions (140 MeV/u) and protons (27.5 and 55 MeV) in a wide-dose-rate range up to 100 Gy/s. The relative G value, which is the G value at each dose rate normalized by that at the conventional dose (CONV: 0.1 Gy/s >), 140 MeV/u carbon-ion beam is almost equivalent to 27.5 and 55 MeV proton beams. This finding implies that UHDR irradiations using carbon-ion beams have a potential to spare healthy tissues. Furthermore, we evaluate the G value of 7OH-C3CA under the de-oxygenated condition to investigate roles of oxygen to the generation of 7OH-C3CA effect. The G value of 7OH-C3CA under the de-oxygenated condition is lower than that under the oxygenated condition. The G value of 7OH-C3CA under the de-oxygenated condition is higher than those under UHDR irradiations. By direct measurements of the oxygen concentration during 55 MeV proton irradiations, the oxygen concentration drops by 0.1%/Gy, which is independent of the dose rate. When the oxygen concentration directly affects to yields of 7OH-C3CA, the rate of decrease in the oxygen concentration may be correlated with that of decrease in the G value of 7OH-C3CA. However, the reduction rate of G value under UHDR is significantly higher than the oxygen consumption. This finding implied that the influence of the reaction between water radiolysis species formed by neighborhood tracks could be strongly related to the mechanisms of UHDR effect.


Assuntos
Terapia com Prótons , Prótons , Carbono , Cumarínicos , Íons , Oxigênio
14.
Int J Urol ; 29(10): 1109-1119, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35692124

RESUMO

Carbon-ions are charged particles with a high linear energy transfer, and therefore, they make a better dose distribution with greater biological effects on the tumors compared with photons and protons. Since prostate cancer, renal cell carcinoma, and retroperitoneal sarcomas such as liposarcoma and leiomyosarcoma are known to be radioresistant tumors, carbon-ion radiotherapy, which provides the advantageous radiobiological properties such as an increasing relative biological effectiveness toward the Bragg peak, a reduced oxygen enhancement ratio, and a reduced dependence on fractionation and cell-cycle stage, has been tested for these urological tumors at the National Institute for Radiological Sciences since 1994. To promote carbon-ion radiotherapy as a standard cancer therapy, the Japan Carbon-ion Radiation Oncology Study Group was established in 2015 to create a registry of all treated patients and conduct multi-institutional prospective studies in cooperation with all the Japanese institutes. Based on accumulating evidence of the efficacy and feasibility of carbon-ion therapy for prostate cancer and retroperitoneal sarcoma, it is now covered by the Japanese health insurance system. On the other hand, carbon-ion radiotherapy for renal cell cancer is not still covered by the insurance system, although the two previous studies showed the efficacy. In this review, we introduce the characteristics, clinical outcomes, and perspectives of carbon-ion radiotherapy and our efforts to disseminate the use of this new technology worldwide.


Assuntos
Neoplasias da Próstata , Neoplasias Urológicas , Carbono/efeitos adversos , Humanos , Íons , Masculino , Oxigênio , Estudos Prospectivos , Neoplasias da Próstata/patologia , Prótons , Radioterapia , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/radioterapia
15.
Phys Med Biol ; 67(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395649

RESUMO

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Carbono/uso terapêutico , Radioterapia com Íons Pesados/métodos , Hélio/uso terapêutico , Íons , Prótons , Eficiência Biológica Relativa
16.
Radiol Phys Technol ; 15(1): 83-88, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822100

RESUMO

In this study, the stopping-power ratios (SPRs) of mouthpiece materials were measured and the errors in the predicted SPRs based on conversion table values were further investigated. The SPRs of the five mouthpiece materials were predicted from their computed tomography (CT) numbers using a calibrated conversion table. Independently, the SPRs of the materials were measured from the Bragg peak shift of a carbon-ion beam passing through the materials. The errors in the SPRs of the materials were determined as the difference between the predicted and measured values. The measured SPRs (errors) of the Nipoflex 710™ and Bioplast™ ethylene-vinyl acetate copolymers (EVAs) were 0.997 (0.023) and 0.982 (0.007), respectively. The SPRs of the vinyl silicon impression material, light-curable resin, and bis-acrylic resin were 1.517 (0.134), 1.161 (0.068), and 1.26 (0.101), respectively. Among the five tested materials, the EVAs had the lowest SPR errors, indicating the highest human-tissue equivalency.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
17.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885155

RESUMO

Track-structure Monte Carlo simulations are useful tools to evaluate initial DNA damage induced by irradiation. In the previous study, we have developed a Gean4-DNA-based application to estimate the cell surviving fraction of V79 cells after irradiation, bridging the gap between the initial DNA damage and the DNA rejoining kinetics by means of the two-lesion kinetics (TLK) model. However, since the DNA repair performance depends on cell line, the same model parameters cannot be used for different cell lines. Thus, we extended the Geant4-DNA application with a TLK model for the evaluation of DNA damage repair performance in HSGc-C5 carcinoma cells which are typically used for evaluating proton/carbon radiation treatment effects. For this evaluation, we also performed experimental measurements for cell surviving fractions and DNA rejoining kinetics of the HSGc-C5 cells irradiated by 70 MeV protons at the cyclotron facility at the National Institutes for Quantum and Radiological Science and Technology (QST). Concerning fast- and slow-DNA rejoining, the TLK model parameters were adequately optimized with the simulated initial DNA damage. The optimized DNA rejoining speeds were reasonably agreed with the experimental DNA rejoining speeds. Using the optimized TLK model, the Geant4-DNA simulation is now able to predict cell survival and DNA-rejoining kinetics for HSGc-C5 cells.

18.
Free Radic Res ; 55(5): 547-555, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34569399

RESUMO

The effects of a magnetic field longitudinal to the ion beam track on the generation of hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) in water were investigated. A longitudinal magnetic field was reported to enhance the biological effects of the ion beam. However, the mechanism of the increased cell death by a longitudinal magnetic field has not been clarified. The local density of •OH generation was estimated by a method based on the EPR spin-trapping. A series of reaction mixtures containing varying concentrations (0.76‒2278 mM) of DMPO was irradiated by 16 Gy of carbon- or iron-ion beams at the Heavy-Ion Medical Accelerator in Chiba (HIMAC, NIRS/QST, Chiba, Japan) with or without a longitudinal magnetic field (0.0, 0.3, or 0.6 T). The DMPO-OH yield in the sample solutions was measured by X-band EPR and plotted versus DMPO density. O2-dependent and O2-independent H2O2 yields were measured. An aliquot of ultra-pure water was irradiated by carbon-ion beams with or without a longitudinal magnetic field. Irradiation experiments were performed under air or hypoxic conditions. H2O2 generation in irradiated water samples was quantified by an EPR spin-trapping, which measures •OH synthesized from H2O2 by UVB irradiation. Relatively sparse •OH generation caused by particle beams in water were not affected by loading a magnetic field on the beam track. O2-dependent H2O2 generation decreased and oxygen-independent H2O2 generation increased after loading a magnetic field parallel to the beam track. Loading a magnetic field to the beam track made •OH generation denser or made dense •OH more reactive.


Assuntos
Peróxido de Hidrogênio , Água , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Radical Hidroxila , Campos Magnéticos , Espécies Reativas de Oxigênio
19.
Phys Med Biol ; 66(20)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560678

RESUMO

For hypo-fractionated multi-ion therapy (HFMIT), the stochastic microdosimetric kinetic (SMK) model had been developed to estimate the biological effectiveness of radiation beams with wide linear energy transfer (LET) and dose ranges. The HFMIT will be applied to radioresistant tumors with oxygen-deficient regions. The response of cells to radiation is strongly dependent on the oxygen condition in addition to radiation type, LET and absorbed dose. This study presents an adaptation of the SMK model to account for oxygen-pressure dependent cell responses, and develops the oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model. In the model, following assumptions were made: the numbers of radiation-induced sublethal lesions (double-strand breaks) are reduced due to lack of oxygen, and the numbers of oxygen-mediated lesions are reduced for radiation with high LET. The model parameters were determined by fitting survival data under aerobic and anoxic conditions for human salivary gland tumor cells and V79 cells exposed to helium-, carbon-, and neon-ion beams over the LET range of 18.5-654.0 keVµm-1. The OSMK model provided good agreement with the experimental survival data of the cells with determination coefficients >0.9. In terms of oxygen enhancement ratio, the OSMK model reproduced the experimental data behavior, including slight dependence on particle type at the same LET. The OSMK model was then implemented into the in-house treatment planning software for the HFMIT to validate its applicability in clinical practice. A treatment plan with helium- and neon-ion beams was made for a pancreatic cancer case assuming an oxygen-deficient region within the tumor. The biological optimization based on the OSMK model preferentially placed the neon-ion beam to the hypoxic region, while it placed both helium- and neon-ion beams to the surrounding normoxic region. The OSMK model offered the accuracy and usability required for hypoxia-based biological optimization in HFMIT treatment planning.


Assuntos
Hélio , Neoplasias Pancreáticas , Hélio/uso terapêutico , Humanos , Hipóxia , Íons , Neônio/uso terapêutico , Oxigênio/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Eficiência Biológica Relativa
20.
Int J Radiat Biol ; 97(10): 1450-1460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34328809

RESUMO

PURPOSE: The stochastic microdosimetric kinetic (SMK) model is one of the most sophisticated and precise models used in the estimation of the relative biological effectiveness of carbon-ion radiotherapy (CRT) and boron neutron capture therapy (BNCT). However, because of its complicated and time-consuming calculation procedures, it is nearly impractical to directly incorporate this model into a radiation treatment-planning system. MATERIALS AND METHODS: Through the introduction of Taylor expansion (TE) or fast Fourier transform (FFT), we developed two simplified SMK models and implemented them into the Particle and Heavy Ion Transport code System (PHITS). To verify the implementation, we calculated the photon isoeffective doses in a cylindrical phantom placed in the radiation fields of passive CRT and accelerator-based BNCT. RESULTS AND DISCUSSION: Our calculation suggested that both TE-based and FFT-based SMK models can reproduce the data obtained from the original SMK model very well for absorbed doses approximately below 5 Gy, whereas the TE-based SMK model overestimates the original data at higher doses. In terms of computational efficiency, the TE-based SMK model is much faster than the FFT-based SMK model. CONCLUSION: This study enables the instantaneous calculation of the photo isoeffective dose for CRT and BNCT, considering their cellular-scale dose heterogeneities. Treatment-planning systems that use the improved PHITS as a dose-calculation engine are under development.


Assuntos
Transporte de Íons , Terapia por Captura de Nêutron de Boro , Cinética , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...